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Abstract

Some remarks on the concept of quantum entanglement are presented. A more phys-

ical and natural notion is proposed. It is equivalent to an algebraic definition which is

close to the non decomposability of overall states into tensor products. The paradigm of

quantum entanglement of mutually distant particles, which arose from the EPR paradox,

is critically considered. It is shown that the results of Aspect’s experiments, possibly, were

misinterpreted.

§ 1. Amended notion of quantum entanglement.

Consider a numbered set of n quantum particles. Particle number s can be in one of

the eigenstates |xs
js⟩ of a complete set of commuting observables, where js ∈ {1, . . . , Ns} and

s ∈ {1, ..., n}. If one considers this ensemble as a single quantum object, then its state may be

represented as |x1
j1
⟩ . . . |xn

jn⟩ = |x1
j1
. . . xn

jn⟩. This implies that any tensor

|A⟩ =
∑

j1,...,jn

cj1...jn · |x1
j1
⟩ ⊗ . . .⊗ |xn

jn⟩ =
∑

j1,...,jn

cj1...jn · |x1
j1
. . . xn

jn⟩ (1)

represents a state of the particle collection. It is assumed that ⟨xn
in . . . x

1
i1
|x1

j1
. . . xn

jn⟩ =

δi1j1 . . . δinjn . Then the state |A⟩ is normalized iff
∑

J |cj1...jn |2 = 1. The condition of symmetry

or antisymmetry should be imposed on the tensor (1) in the case of identical bosons or fermions

correspondingly. The set of indices j1, . . . , jk−1, jk+1, . . . , jn we denote as j1, . . . , ĵk, . . . , jn.

But there are no physical grounds for the opinion that any collection of quantum systems

with the state spaces Sj is an object with the state space S =
⊗

j Sj. This preconception, being

a basis of the quantum computing paradigm, leads to strange conclusions. For example, the pair

of electrons selected from different galaxies is treated as a united quantum system. Apparently,

the tensor products of state spaces should be introduced more cautiously.

Definition 1 Let a normalized vector (1) represents an overall quantum state of particles with

numbers 1, 2, . . . , n. Then particles k and l, where l > k, are called entangled in the state |A⟩ if
there exists such a pair ik, il that the following holds.
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In the case n > 2∑
j1,...,̂jk,...,̂jl,...,jn

|cj1...ik...il...jn|2 ̸=
∑

j1,...,̂jk,...,jn

|cj1...ik...jl...jn |2 ·
∑

j1,...,̂jl,...,jn

|cj1...jk...il...jn|2 , (2)

in the case n = 2 (when k = 1 and l = 2)

|ci1i2 |2 ̸=
∑
j2

|ci1j2 |2 ·
∑
j1

|cj1i2 |2 .

A pair of not entangled particles is called independent (in the corresponding state (1)). A

set of particles is called independent if each pair of them is independent.

Let as a result of some measurement the particles k and l have been transferred into states

|xk
ik
⟩ and |xl

il
⟩. Denote these random events as Ak and Bl. Then the left-hand and right-hand

parts (2) are equal to P (AkBl) and P (Ak)P (Bl) accordingly. Equation (2) means that Ak and

Bl are mutually dependent events (in the sense of the theory of probabilities). The independence

of all such events is equivalent to the independence of particles k and l in the state (1). This

clarifies the physical meaning of Definition 1.

Proposition 1 A set of two particles in a state |A⟩ =
∑

j1j2
cj1j2 |xj1yj2⟩ is independent iff for

some vj1 , wj2 ∈ C and φj1,j2 ∈ R the following holds:∑
j1j2

cj1j2e
iφj1j2 · |xj1yj2⟩ =

∑
j1

vj1 |xj1⟩ ⊗
∑
j2

wj2 |yj2⟩ . (3)

Proof. We assume the state vector |A⟩ to be normalized.

Suppose (3) takes place. Then cj1j2e
iφj1j2 = vj1wj2 and for all k, l we have:

|ckl|2 = |ckl|2 ·
∑
j1j2

|cj1j2 |2 = |vk|2|wl|2 ·
∑
j2

|wj2 |2 ·
∑
j1

|vj1 |2 =
∑
j2

|ckj2 |2 ·
∑
j1

|cj1l|2 .

By Definition 1 the particles are independent.

Conversely, let |ckl|2 =
∑

j2
|ckj2 |2 ·

∑
j1
|cj1l|2 for all k, l. Then denote |vk|2 =

∑
j2
|ckj2 |2 and

|wl|2 =
∑

j1
|cj1l|2. The complex numbers vk and wl are defined up to phase factors. Arbitrarily

fixating these factors we have |ckl| = |vkwl| and, hence, each ckl differs from vkwl by a multiplier

eiφkl 2.

Definition 2 Let a set of particles in a state (1) is the union of two non-empty and disjoint

subsets A and B. These subsets are called entangled (with each other) if there exists a pair of

entangled particles a ∈ A and b ∈ B. Otherwise they are called independent. If a particle set

cannot be separated into independent subsets, then it is called entangled.
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The existence of independent subsets means that the particle set is a formal union of quantum

systems not interacting with each other. This physically evident fact strictly follows from the

following assertion.

Theorem 1 Let a set of n particles in a state (1) is separated into two non-empty subsets. The

particles are numbered so that 1, 2, . . . ,m constitute one subset and m+1,m+2, . . . , n form the

other.

These subsets are independent in the state (1) iff for some vj1...jm, wjm+1...jn ∈ C and

c̃j1...jn = cj1...jne
iφj1,...,jn with φj1,...,jn ∈ R the following holds:∑

j1,...,jn

c̃j1...jn |x1
j1
. . . xn

jn⟩ =
∑

j1,...,jm

vj1...jm|x1
j1
. . . xm

jm⟩ ⊗
∑

jm+1,...,jn

wjm+1...jn |xm+1
jm+1

. . . xn
jn⟩. (4)

Proof. We assume the state vector |A⟩ to be normalized.

Suppose (4) takes place. Let’s verify the independence of any two particles with numbers

k ≤ m and l ≥ m+ 1. From (4) it follows that∑
j1,...,̂jk,...,̂jl,...,jn

|cj1...ik...il...jn |2 =
∑

j1,...,̂jk,...,jm

|vj1...ik...jm |2 ·
∑

jm+1,...,̂jl,...,jn

|wjm+1...il...jn |2. (5)

The right-hand part (2) can be calculated as follows:∑
j1,...,̂jk,...,jn

|cj1...ik...jl...jn |2 ·
∑

j1,...,̂jl,...,jn

|cj1...jk...il...jn |2 =

∑
j1,...,̂jk,...,jm

|vj1...ik...jm|2 ·
∑

jm+1,...,jn

|wjm+1...jn|2 ·
∑

j1,...,jm

|vj1...jm|2 ·
∑

jm+1,...,̂jl,...,jn

|wjm+1...il...jn |2 =

∑
j1,...,̂jk,...,jm

|vj1...ik...jm |2 ·
∑

jm+1,...,̂jl,...,jn

|wjm+1...il...jn |2 ·
∑

j1,...,jn

|cj1...jn |2.

As the latter factor is equal to 1, we have obtained the right-hand part of (5). According to

Definition 1 the particles k and l are independent in state (1).

Suppose now that two particles with numbers k ≤ m and l ≥ m+1 are independent in this

state. Renumbering the set, if necessary, one may assume that this pair stands at the beginning.

Then the state vector looks as follows:

|A⟩ =
∑

j3,...,jn

(∑
j1,j2

cj1j2j3...jn · |x1
j1
x2
j2
⟩
)
⊗ |x3

j3
. . . xn

jn⟩

For any fixed indices j3 . . . jn let’s consider the particles 1 and 2 as a set in the quantum

state
∑

j1,j2
cj1j2j3...jn · |x1

j1
x2
j2
⟩. This set of particles is independent (Definition 1). Proposition 1
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implies that cj1j2j3...jn = ṽj1j3...jn · w̃j2j3...jn for all j1, j2. Returning back to the initial numeration

of all the particles, the overall state is represented by the tensor

|A⟩ =
∑

j1,...,jn

vj1...̂jl...jn · wj1...̂jk...jn
· |x1

j1
. . . xn

jn⟩. (6)

If there exists another pair of particles from the independent subsets with numbers r ≤
m and s ≥ m + 1, then by the analogy to (6) we obtain cj1...jn = aj1...̂js...jn · bj1...̂jr...jn . As
vj1...̂jl...jn · wj1...̂jk...jn

= aj1...̂js...jn · bj1...̂jr...jn , then for some λ ̸= 0 we have:

vj1...̂jl...jn = λ(j1, . . . , ĵl, . . . , jn) · aj1...̂js...jn
wj1...̂jk...jn

= λ−1(j1, . . . , ĵk, . . . , jn) · bj1...̂jr...jn

It is seen that a and b don’t depend on jl and jk correspondingly. Thus

|A⟩ =
∑

j1,...,jn

aj1...̂jl...̂js...jn · bj1...̂jk...̂jr...jn · |x1
j1
. . . xn

jn⟩.

The mutual order of the particles k and r as well as l and s does not matter. This process

will stop once one of the independent subsets has become empty, i.e., all its particles have been

chosen before. Obviously, equation (4) will be obtained in such a way 2.

Corollary 1 set of n particles is independent in a state (1) iff for some vj11 , . . . , vjnn ∈ C and

c̃j1...jn = cj1...jne
iφj1,...,jn with φj1,...,jn ∈ R the following holds:∑

j1,...,jn

c̃j1...jn |x1
j1
. . . xn

jn⟩ =
∑
j1

vj11 |x1
j1
⟩ ⊗ . . .⊗

∑
jn

vjnn |xn
jn⟩.

Proof. The independence of a set is equivalent to the pairwise independence of all the

particles it contains. As easy to verify, an independent pair inside a set will be independent in

any subset containing the pair. The proof residue directly follows from Theorem 1 2.

Proposition 2 The fact that a particle set is entangled in some state implies that this quantum

system cannot be separated into not interacting subsystems.

Speaking of not interacting systems we mean the absence of any physical interaction, neither

directly nor by means of other bodies. For a triple of particles the criterion of independence

looks as follows: ∑
j |cjkl|2 =

∑
jr |cjkr|2 ·

∑
js |cjsl|2∑

j |ckjl|2 =
∑

jr |ckjr|2 ·
∑

js |csjl|2∑
j |cklj|2 =

∑
jr |ckrj|2 ·

∑
js |cslj|2

(7)

Violation at least one of (7) indicates that the corresponding particles k and l are entangled in

this state. In the case of qubits equations (7) can be easily verified by a computer.
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Definition 1 for the entangled state of two particles is close to the conventional notion.

Namely, a pair state |A⟩ is called separable or entangled depending on whether it is decomposable

into the tensor product (3) or not. Proposition 1 implies that any pair of separable particles

is independent. The converse is not true as seen from the following example. Consider a pair

state

|Aφ⟩ = |0⟩ ⊗ |0⟩+ eiφ · |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩ (8)

with φ ∈ [0; 2π). The state |A0⟩ =
(
|0⟩+ |1⟩

)
⊗
(
|0⟩+ |1⟩

)
is separable. According to Proposition

1, these particles are independent in any state (8). But the latter is not separable if φ ̸= 0.

It is important to note that for any φ1 and φ2 the states |Aφ1⟩ and |Aφ2⟩ (8) are experi-

mentally indistinguishable. Indeed, according to the foundations of quantum mechanics [1], in

the course of any measurement of this pair the state |Aφ⟩ will equiprobably be collapsed into

either of the states |00⟩, |01⟩, |10⟩, |11⟩ regardless of the value φ. Analogously, let there be

given a state |A⟩ =
∑

kl ckl · |xkyl⟩ of any two particles. The difference from a state with the

coefficients ckl multiplied by any phase factors is not detectable in practice. For example, let

|x⟩ and |y⟩ be the linear polarization states of a photon. Then the circular polarization state

(|x⟩+ i|y⟩)/
√
2 and the state (|x⟩+ |y⟩)/

√
2 of equiprobable polarizations along the axes x and

y can not be distinguished by means of any polarizer. Indeed, in both these states a photon

will pass through the polarizer with equal probabilities.

Thus, the usual definition of entangled state as one that is not separable [2] results in the

situation when physically independent particles are considered to be entangled. The emended

notion of quantum entanglement is a few stronger. According to Definitions 1 and 2, if mutually

distant particles are considered to be entangled, then correlations between the results of some

their measurements must a’priori be detectable in experiments. Herewith the usual paradigm

predicts such correlations as a logical consequence of a purely mathematical concept based on

the tensor product notion.

In what follows a precise definition of quantum entanglement is not significant and a reader

may keep in mind the concept which is habitual for him.

§ 2. EPR – entanglement

In what follows an entangled state of mutually distant particles which don’t physically interact

to each other is called EPR – entangled. This idea goes back to the EPR paradox, and the

present article is questioning the possibility of such a state. But here we are considering EPR

– entangled states as theoretically possible ones.

This paradigm results in conclusions that are so contrary to the common sense that the
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popular term of quantum magic looks justified. It makes the picture of the world very spec-

tacular. In addition, the notion of EPR – entanglement is critically important to quantum

computing. This concept is a basis for the control of qubits and the organization of quantum

parallelism. According to this paradigm, EPR – entanglement and quantum entanglement are

the same concepts.

The most of experiments on the confirmation of EPR – entanglement phenomenon are

related to the interference of photons. In this regard, the following quote of Dirac is worth to

be noted (§3 Chapter 1 [1]).

”...Suppose we have a beam of light consisting of a large number of photons split up into two

components of equal intensity. On the assumption that the intensity of a beam is connected with

the probable number of photons in it, we should have half the total number of photons going into

each component. If the two components are now made to interfere, we should require a photon in

one component to be able to interfere with one in the other. Sometimes these two photons would

have to annihilate one another and other times they would have to produce four photons. This

would contradict the conservation of energy. The new theory, which connects the wave function

with probabilities for one photon, gets over the difficulty by making each photon go partly into

each of the two components. Each photon then interferes only with itself. Interference between

two different photons never occurs.”

Thus, all the attempts of detecting EPR – entangled photons by using interferometers

are meaningless. Indeed, each photon can interfere only with itself. Hence, the detection of

coincident polarizations may not be interpreted as an evidence of EPR – entanglement. Hence,

one should critically analyze all the experiments relating to entangled photons [3]. The same

relates to the experiments with photons entangled in phases [4], because a photon has no

observables with the eigenvalues of the phase.

A pair of electrons, that have jumped out of an atomic orbital in the course of ionization, is

often considered to be an example of EPR – entangled particles. These electrons are leaving the

atom in an overall state which is entangled in spins, i.e., in the state
(
|+⟩⊗|−⟩−|−⟩⊗|+⟩

)
/
√
2

where the signs + and − indicate the spin projections onto z - axis. It is believed that such a

state should arise by virtue of the law of angular momentum conservation.

Suppose the atom has had zero total angular momentum before ionization. One may assume

that the electrons are flying apart being in the independent state

|A⟩ = (α1|+⟩+ β1|−⟩)⊗ (α2|+⟩+ β2|−⟩)√
|α1|2|α2|2 + |α1|2|β2|2 + |α2|2|β1|2 + |β1|2|β2|2

.
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Then the average value of the overall angular momentum is equal to

⟨A|s1 ⊗ I2 + I1 ⊗ s2|A⟩ =
(|α1|2|α2|2 − |β1|2|β2|2) ~√

|α1|2|α2|2 + |α1|2|β2|2 + |α2|2|β1|2 + |β1|2|β2|2
(9)

where s1, s2 are the spin operators and I1, I2 are the identity operators acting in the state

spaces of electrons taken separately. Here the angular momentum conservation means that (9)

is zero, i.e., |α1||α2| = |β1||β2|. With |α1|2 + |β1|2 = 1 and |α2|2 + |β2|2 = 1 from here it follows

that ∀r ≥ 0 one may assume the following:

|α1| =
r√

1 + r2
, |β1| =

1√
1 + r2

, |α2| =
1√

1 + r2
, |β2| =

r√
1 + r2

.

Thus, there exists continuum of independent states of the pair that do not contradict the law

of angular momentum conservation. Hence, this pair of electrons is by no means obliged to be

entangled. The converse opinion, in fact, is a common preconception.

It is strange that violations of Bell’s inequalities are considered to be the evidences in

favor of the EPR – entanglement phenomenon. Such violations do occur but, as seen from the

fountainhead [5], this allows making only one of two the following conclusions.

a) Quantum systems have no hidden parameters [6]. This meets to the ”orthodoxal” quan-

tum mechanics [1] and is not related to EPR – entanglement.

b) Hidden parameters exist and a measurement of one particle may affect the other far

remote particle. Hence, EPR – entanglement might have a place in reality.

One may assume that violations of Bell’s inequalities entail the assertion a). However, these

violations are ubiquitously considered to be the evidences of b). This point of view was formed

under the influence of experiments by Aspect and similar ones. Allegedly, in such experiments

the correlations between the linear polarizations of mutually remote photons were being observed

[7]. Be this is true, Bell’s inequalities would not be needed for experimental verification of the

EPR – entanglement phenomenon.

§ 3. Aspect’s experiments.

The data obtained in these experiments are usually interpreted on the basis of the interpretation

of photons as corpuscles, i.e., well localized particles. Fluorescent light sources were used, where

an atom emits two photons with the average interval τ ≈ 5 ns. It is believed that the photons

from each atom have the same circular polarizations and are flying apart in opposite directions.

According to this classic picture, the angular momentum of the pair is zero. From here Aspect

[7] concluded that its state is entangled in linear polarizations:

|A⟩ = |x⟩ ⊗ |x⟩+ |y⟩ ⊗ |y⟩√
2

=
|R1⟩ ⊗ |R2⟩+ |L1⟩ ⊗ |L2⟩√

2
(10)
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where the photon 1 is moving in the direction of z - axis whilst the photon 2 is moving backwards,

|R1⟩ = |L2⟩ =
(
|x⟩+ i|y⟩

)
/
√
2 and |L1⟩ = |R2⟩ =

(
|x⟩ − i|y⟩

)
/
√
2 . The states |x⟩ and |y⟩ of a

single photon correspond to its linear polarizations along x and y axes. In the states |Lj⟩ and
|Rj⟩ the photon j is circularly polarized clockwise and counterclockwise correspondingly, if one

looks from the side of z - axis when j = 1 and from the opposite side when j = 2.

Equality (10) is proved by trivial algebraic calculations but a non-trivial mistake is hiding

here. Namely, any eigenstate of polarization is meaningful only in some eigenstate of momentum

p. Then the photon wave function looks as

f(k, t) =
i√
∆

· δkpe−iωt · e (11)

with a polarization vector e ∈ C3, where (e,p) = 0 and (e∗, e) = 1 (2.4) [8]. Here ∆ is the

volume of a sufficiently large cube containing all the electromagnetic field, p = ω0n with n ∈ Z3,

|n| ≫ 1 and ω0 = 2π/∆1/3 (the Heaviside system of units is combined with the relativistic one,

so that ~ = c = 1 [8]).

In the case of electric dipole radiation, the emitted photon is assumed to be in some eigen-

state of angular momentum. According to [7], the corresponding quantum numbers are j = 1

and M = ±1 for the pair of photons emitted in one cascade. The eigenstates of angular mo-

mentum with a frequency ω are represented by the wave functions

f(k, t) =
ik

ω
√

δj(j + 1)
· δkωe−iωt · ∇kYjM (12)

where YjM is a spherical harmonic with j > 0 (4,15)(4.20) [8]. Here δ = π/R and R is the

radius of a large ball containing all the electromagnetic field, ω = ω0n with n ∈ N, n ≫ 1 and

ω0 = δ.

But a photon can not simultaneously be in the eigenstates of momentum and angular mo-

mentum because these observables don’t commute. Easy to see that wave functions (11) and

(12) are totally different. Thus, in [7] there was expounded a theoretically incorrect argumen-

tation in favor of entangled pairs appearance. The classic model, where two emitted photons

with the same circular polarizations are flying apart in opposite directions, in fact is far from

QED.

It is worth to mention that analogous simplification is met in chapter 18 of the legendary

book [9]. It might be acceptable for the first acquaintance to quantum mechanics, but such

kind of reasonings play an important part in the interpretations of experiments on EPR –

entanglement.

The experiment by Aspect reduces to counting photon pairs passed through two mutually

distant polarizers [7]. A short time interval ∼ 5 ns between two detections in a row is considered
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to be the guarantee that both these photons were emitted by a single atom. But one may

interpret this experiment in a different way. It is reasonable to suppose that two detector

operations in a row are related to a single photon in the form of a ”spherical wave” which

interacts with two photomultiplier tubes. Let’s consider such a picture in details.

In the eigensate of angular momentum and its z - projection, the electric component of the

photon field according to (12) looks as follows:

E(r, t) = 2ℜ
{
i

√
δ

2

( ω

2π

)3/2

·
∫
|n|=1

Y
(1)
jM

(
n
)
eiω(n·r−t)dS(n)

}
(13)

where Y
(1)
jM = k(j(j + 1))−1/2 · ∇kYjM (4.15) [8]. Since j = 1 in the case under consideration,

then in view of (4.18) [8] Y
(1)
jM(−n) = Y

(1)
jM(n) and from (13) we have E(r, t) = E(−r, t). Hence,

this photon will equally interact with two equally oriented polarizers at the points ±r.

In reality these polarizers are differently removed from the light source. Let the distances

are r2 > r1 and τ = r2 − r1 (here c = 1). Suppose the field of a photon represents a spherical

wave and (a; b) is a time interval. Then ∀t ∈ (a; b) we have kr2 − ω(t + τ) = kr1 − ωt and

E(r1, t) = E(r2, t+ τ). Hence, this photon is equally interacting with both the polarizers.

But the photon field (13) is not a spherical wave, although it propagates in all directions

from the source. In the case j = 1, the following asymptotic formula is obtained from (4.28) [8]

for the field (13) in the ”wave zone”:

E(r, t) ≈ 8πℜ
{
i

√
δ

2

( ω

2π

)3/2

·
(√

1/3 ·Y1,2,M +
√

2/3 ·Y1,0,M

)sin(kr)
kr

· e−iωt
}

(14)

where Y1,l,M is a vector spherical harmonic with M = ±1. According to (14), the field E has

two components with phases kr − ωt, kr + ωt and equal amplitudes. The component with the

phase kr − ωt interacts with the polarizers just like a spherical wave.

As for the other component, the phases difference (kr2 + ω(t + τ)) − (kr1 + ωt) = 2ωτ

∀t ∈ (a; b). The values r1 and r2 are defined approximately and, obviously, the error ∆τ =

∆(r2 − r1) ≫ λ where λ is the photon wavelength. Then ∆(2ωτ) ≫ 1 and, when considering

the interaction with a polarizer, the component with the phase kr + ωt is similar to a photon

with zero degree of polarization and, hence, may be ignored.

Thus, considering a photon with quantum numbers ω, j = 1 and M = ±1 as the wave (13),

one must conclude that it will interact with both the polarizers similarly to a pair of equally

polarized photons flying apart towards these polarizers (in opposite directions). From the point

of view of QM the following happens. After passing through the nearest polarizer, the photon

found itself in the state of a definite polarization but indefinite direction of the motion. This

picture will not seem strange if one takes into account that the observables of polarization and
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momentum represent some linear operators commuting with each other [1]. Then the photon

freely had passed through the second polarizer which has the same orientation.

Let’s come back to the ordinary system of units. In Aspect’s experiments the wavelengths

of the photons were close to 420 and 550 nm which corresponds to the energies ≈ 3 and 2.3

eV. Since the sensibility of photocathodes achieves ≈ 1.1 eV, the energy of one such photon is

sufficient for activating two photomultipliers. This event is by no means exclusive because there

exist photocathodes with the quantum yield of 2 electrons per a photon with λ ≈ 1.4 µm.

The Einstein’s equation allows a photon to punch out only one electron. This corresponds

to the case A < ~ω < 2A, where A is the work function. Evidently, this inequality was true

in early experiments on photoeffect. Indeed, for a metallic surface A > 3 eV and only some

alkaline and alkaline earth metals have A ≈ 2− 3 eV. In classical experiments by Stoletow the

ultraviolet light λ ≈ 295 nm, which corresponds to ~ω ≈ 4.2 eV, was used [10].

The principles of QM [1], in fact, does not forbid a photon to interact with several electrons.

Such effects were observed in much more dramatic situations with super-power laser beams in

the soft X-ray and extreme ultraviolet range [11, 12]. Quite reasonable to suppose that, when

a photon in state (13) meets two photomultipliers at two places remote from each other, it

spends only a part of the energy in every interaction as if there have been two acts of inelastic

(Compton) scattering.

According to (56.12) [13], for hydrogen-like atoms the photoeffect cross section

σ =
29π2

3

αa20
Z2

(
I

~ω

)4
e−4ν arctan(1/ν)

1− e−2πν
ν =

Ze2

~v
=

Zα

v/c
, α ≈ 1

137
(15)

where v is the electron velocity after departing from an atom. Under the conditions of Aspect’s

experiment a photoelectron velocity does not exceed ∼ 1000 km/sec and, as easy to verify,

the multiplier in (15) containing ν parameter may be considered to be constant. Hence, the

cross-section σ does not depend on the frequency ω provided ~ω > A. One may suppose that

the first interaction of photon — photomultiplier, albeit has reduced ω, has not affected the

cross section of the second interaction.

But why is the photon counter activated two times in a row with the average interval ≈ 5

ns ? For detecting of the photon pairs two photomultipliers were used [7]. The rise time of the

photoelectron avalanche in this device is easy to estimate as ∼ 10 ns. Only one photon can be

detected within this period. In fact the photon represents not a wave (13) but a packet of such

waves. If the wave packet size ∆r ∼ 1 meter, which corresponds to the Doppler broadening

∼ 10−3
◦
A, then the time of passing through the photomultiplier has the same order of magnitude

as the interval between two photons emitted from an atom. The wave packet, propagating in

all directions from the source, passes through both the polarizers and then activates both the
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photomultipliers. Until they finish their operations, i.e., during ∼ 10 ns no other photons can

be detected. When the photomultipliers restored the operability, the wave packet of the second

photon has already passed by.

Thus, quite reasonable looks the supposition that in most the cases not entangled pairs

but single photons were detected by means of the pair of photomultipliers. Thus, the results

of Aspects’ experiments can be explained without introducing the concept of EPR – entangle-

ment. All the other experiments with allegedly EPR – entangled photons, presumably, can be

interpreted in analogous way.

§ 4. Conclusion

The EPR – entanglement, i.e., the widespread concept of quantum entanglement is now consid-

ered as a scientific fact which was theoretically deduced from quantum mechanics and reliably

confirmed by experiments. Most of the scientific community have accepted this idea as is, de-

spite of the fact that many of the predicted effects defy the common sense and deserve the

epithet of quantum magic. The aim of the article was to show that this paradigm has weak the-

oretical and experimental grounds. Quantum entanglement is really the place to be in systems

of identical particles which overall states satisfy the condition of symmetry or antisymmetry [1].

But one should distinguish such systems, arising in a natural way, with those defined by means

of arbitrary and formal associations of quantum objects.

The emended notion of quantum entanglement, that was introduced in §1, demands quan-

tum correlations to really take place when they are considered. This definition is close to the

usual one that introduces the quantum entanglement by means of the notion of tensor prod-

uct. But Definition 1 looks more physical and, possibly, it would reduce the freedom of purely

mathematical speculations around the quantum entanglement.

The classical experiments by Aspect became an experimental foundation for the EPR –

entanglement paradigm (§2). As it is shown in §3, they can be interpreted without using this

concept. Furthermore, there are no reliable, theoretical grounds for the conventional interpreta-

tion of these experiments in the terms of entangled photon pairs. Since the allegedly entangled

photons are considered to be the main evidence in favor of the EPR — entanglement phe-

nomenon, one should critically reconsider such experiments and more cautiously make use of

this notion.
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